A general first main theorem of value distribution. II

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A More General Version of the Costa Theorem

In accordance with the Costa theorem, the interference which is independent of the channel input and known non-causally at the transmitter, does not affect the capacity of the Gaussian channel. In some applications, the known interference depends on the input and hence has some information. In this paper, we study the channel with input dependent interference and prove a capacity theorem that n...

متن کامل

The First Mean Value Theorem for Integrals

For simplicity, we use the following convention: X is a non empty set, S is a σ-field of subsets of X, M is a σ-measure on S, f , g are partial functions from X to R, and E is an element of S. One can prove the following three propositions: (1) If for every element x of X such that x ∈ dom f holds f(x) ≤ g(x), then g − f is non-negative. (2) For every set Y and for every partial function f from...

متن کامل

Approximating the Main Conjecture in Vinogradov’s Mean Value Theorem

We apply multigrade efficient congruencing to estimate Vinogradov’s integral of degree k for moments of order 2s, establishing strongly diagonal behaviour for 1 6 s 6 1 2 k(k + 1) − 1 3 k + o(k). In particular, as k → ∞, we confirm the main conjecture in Vinogradov’s mean value theorem for 100% of the critical interval 1 6 s 6 1 2 k(k + 1).

متن کامل

Estimation for the Type-II Extreme Value Distribution Based on Progressive Type-II Censoring

In this paper, we discuss the statistical inference on the unknown parameters and reliability function of type-II extreme value (EVII) distribution when the observed data are progressively type-II censored. By applying EM algorithm, we obtain maximum likelihood estimates (MLEs). We also suggest approximate maximum likelihood estimators (AMLEs), which have explicit expressions. We provide Bayes ...

متن کامل

Zariski’s Main Theorem

By base change, i′n is also a closed embedding, hence affine. We have the unit map F → in∗i ′∗ n (F ). Applying Rf∗ gives a map Rf∗(F ) → Rf∗i ′ n∗i ′∗ n (F ). Since i ′ n is affine, Ri′n∗ ≃ i ′ n∗. By Leray’s spectral sequence, Rf∗i ′ n∗ ≃ R(f ◦ i ′ n)∗ ≃ R(in ◦ fn)∗ ≃ in∗Rfn∗. Applying H, we have a map Rf∗(F ) → R f∗i ′ n∗i ′∗ n (F ) ≃ in∗R fn∗(i ′∗ n (F )). Applying in∗i ∗ n to both sides an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Mathematica

سال: 1967

ISSN: 0001-5962

DOI: 10.1007/bf02392480